Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e16028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744223

RESUMO

Heteroplasmy is the presence of two or more organellar genomes (mitochondrial or plastid DNA) in an organism, tissue, cell or organelle. Heteroplasmy can be detected by visual inspection of Sanger sequencing chromatograms, where it appears as multiple peaks of fluorescence at a single nucleotide position. Visual inspection of chromatograms is both consuming and highly subjective, as heteroplasmy is difficult to differentiate from background noise. Few software solutions are available to automate the detection of point heteroplasmies, and those that are available are typically proprietary, lack customization or are unsuitable for automated heteroplasmy assessment in large datasets. Here, we present PHFinder, a Python-based, open-source tool to assist in the detection of point heteroplasmies in large numbers of Sanger chromatograms. PHFinder automatically identifies point heteroplasmies directly from the chromatogram trace data. The program was tested with Sanger sequencing data from 100 humpback whales (Megaptera novaeangliae) tissue samples with known heteroplasmies. PHFinder detected most (90%) of the known heteroplasmies thereby greatly reducing the amount of visual inspection required. PHFinder is flexible and enables explicit specification of key parameters to infer double peaks (i.e., heteroplasmies).


Assuntos
Heteroplasmia , Jubarte , Animais , Fluorescência , Mitocôndrias , Nucleotídeos
2.
Science ; 381(6661): 990-995, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37651509

RESUMO

Phylogeny-based estimates suggesting a low germline mutation rate (µ) in baleen whales have influenced research ranging from assessments of whaling impacts to evolutionary cancer biology. We estimated µ directly from pedigrees in four baleen whale species for both the mitochondrial control region and nuclear genome. The results suggest values higher than those obtained through phylogeny-based estimates and similar to pedigree-based values for primates and toothed whales. Applying our estimate of µ reduces previous genetic-based estimates of preexploitation whale abundance by 86% and suggests that µ cannot explain low cancer rates in gigantic mammals. Our study shows that it is feasible to estimate µ directly from pedigrees in natural populations, with wide-ranging implications for ecological and evolutionary research.


Assuntos
Taxa de Mutação , Baleias , Animais , Linhagem , Baleias/genética
3.
Proc Natl Acad Sci U S A ; 120(10): e2214035120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848574

RESUMO

Assessing environmental changes in Southern Ocean ecosystems is difficult due to its remoteness and data sparsity. Monitoring marine predators that respond rapidly to environmental variation may enable us to track anthropogenic effects on ecosystems. Yet, many long-term datasets of marine predators are incomplete because they are spatially constrained and/or track ecosystems already modified by industrial fishing and whaling in the latter half of the 20th century. Here, we assess the contemporary offshore distribution of a wide-ranging marine predator, the southern right whale (SRW, Eubalaena australis), that forages on copepods and krill from ~30°S to the Antarctic ice edge (>60°S). We analyzed carbon and nitrogen isotope values of 1,002 skin samples from six genetically distinct SRW populations using a customized assignment approach that accounts for temporal and spatial variation in the Southern Ocean phytoplankton isoscape. Over the past three decades, SRWs increased their use of mid-latitude foraging grounds in the south Atlantic and southwest (SW) Indian oceans in the late austral summer and autumn and slightly increased their use of high-latitude (>60°S) foraging grounds in the SW Pacific, coincident with observed changes in prey distribution and abundance on a circumpolar scale. Comparing foraging assignments with whaling records since the 18th century showed remarkable stability in use of mid-latitude foraging areas. We attribute this consistency across four centuries to the physical stability of ocean fronts and resulting productivity in mid-latitude ecosystems of the Southern Ocean compared with polar regions that may be more influenced by recent climate change.


Assuntos
Mudança Climática , Ecossistema , Animais , Regiões Antárticas , Efeitos Antropogênicos , Oceano Índico
4.
Glob Chang Biol ; 28(8): 2657-2677, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35106859

RESUMO

Global warming is affecting the population dynamics and trophic interactions across a wide range of ecosystems and habitats. Translating these real-time effects into their long-term consequences remains a challenge. The rapid and extreme warming period that occurred after the Last Glacial Maximum (LGM) during the Pleistocene-Holocene transition (7-12 thousand years ago) provides an opportunity to gain insights into the long-term responses of natural populations to periods with global warming. The effects of this post-LGM warming period have been assessed in many terrestrial taxa, whereas insights into the impacts of rapid global warming on marine taxa remain limited, especially for megafauna. In order to understand how large-scale climate fluctuations during the post-LGM affected baleen whales and their prey, we conducted an extensive, large-scale analysis of the long-term effects of the post-LGM warming on abundance and inter-ocean connectivity in eight baleen whale and seven prey (fish and invertebrates) species across the Southern and the North Atlantic Ocean; two ocean basins that differ in key oceanographic features. The analysis was based upon 7032 mitochondrial DNA sequences as well as genome-wide DNA sequence variation in 100 individuals. The estimated temporal changes in genetic diversity during the last 30,000 years indicated that most baleen whale populations underwent post-LGM expansions in both ocean basins. The increase in baleen whale abundance during the Holocene was associated with simultaneous changes in their prey and climate. Highly correlated, synchronized and exponential increases in abundance in both baleen whales and their prey in the Southern Ocean were indicative of a dramatic increase in ocean productivity. In contrast, the demographic fluctuations observed in baleen whales and their prey in the North Atlantic Ocean were subtle, varying across taxa and time. Perhaps most important was the observation that the ocean-wide expansions and decreases in abundance that were initiated by the post-LGM global warming, continued for millennia after global temperatures stabilized, reflecting persistent, long-lasting impacts of global warming on marine fauna.


Assuntos
Ecossistema , Aquecimento Global , Animais , Oceano Atlântico , Dinâmica Populacional , Baleias/fisiologia
5.
Mol Ecol ; 31(4): 1044-1056, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34861074

RESUMO

Pleistocene environmental changes are generally assumed to have dramatically affected species' demography via changes in habitat availability, but this is challenging to investigate due to our limited knowledge of how Pleistocene ecosystems changed through time. Here, we tracked changes in shallow marine habitat availability resulting from Pleistocene sea level fluctuations throughout the last glacial cycle (120-14 thousand years ago; kya) and assessed correlations with past changes in genetic diversity inferred from genome-wide SNPs, obtained via ddRAD sequencing, in Caribbean hawksbill turtles, which feed in coral reefs commonly found in shallow tropical waters. We found sea level regression resulted in an average 75% reduction in shallow marine habitat availability during the last glacial cycle. Changes in shallow marine habitat availability correlated strongly with past changes in hawksbill turtle genetic diversity, which gradually declined to ~1/4th of present-day levels during the Last Glacial Maximum (LGM; 26-19 kya). Shallow marine habitat availability and genetic diversity rapidly increased after the LGM, signifying a population expansion in response to warming environmental conditions. Our results suggest a positive correlation between Pleistocene environmental changes, habitat availability and species' demography, and that demographic changes in hawksbill turtles were potentially driven by feeding habitat availability. However, we also identified challenges associated with disentangling the potential environmental drivers of past demographic changes, which highlights the need for integrative approaches. Our conclusions underline the role of habitat availability on species' demography and biodiversity, and that the consequences of ongoing habitat loss should not be underestimated.


Assuntos
Tartarugas , Animais , Biodiversidade , Recifes de Corais , Ecossistema , Dinâmica Populacional , Tartarugas/genética
6.
Heredity (Edinb) ; 127(6): 510-521, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34635850

RESUMO

The occasional westward transport of warm water of the Agulhas Current, "Agulhas leakage", around southern Africa has been suggested to facilitate tropical marine connectivity between the Atlantic and Indian oceans, but the "Agulhas leakage" hypothesis does not explain the signatures of eastward gene flow observed in many tropical marine fauna. We investigated an alternative hypothesis: the establishment of a warm-water corridor during comparatively warm interglacial periods. The "warm-water corridor" hypothesis was investigated by studying the population genomic structure of Atlantic and Southwest Indian Ocean green turtles (N = 27) using 12,035 genome-wide single nucleotide polymorphisms (SNPs) obtained via ddRAD sequencing. Model-based and multivariate clustering suggested a hierarchical population structure with two main Atlantic and Southwest Indian Ocean clusters, and a Caribbean and East Atlantic sub-cluster nested within the Atlantic cluster. Coalescent-based model selection supported a model where Southwest Indian Ocean and Caribbean populations diverged from the East Atlantic population during the transition from the last interglacial period (130-115 thousand years ago; kya) to the last glacial period (115-90 kya). The onset of the last glaciation appeared to isolate Atlantic and Southwest Indian Ocean green turtles into three refugia, which subsequently came into secondary contact in the Caribbean and Southwest Indian Ocean when global temperatures increased after the Last Glacial Maximum. Our findings support the establishment of a warm-water corridor facilitating tropical marine connectivity between the Atlantic and Southwest Indian Ocean during warm interglacials.


Assuntos
Genética Populacional , Tartarugas , Animais , Oceano Atlântico , Fluxo Gênico , Oceano Índico , Metagenômica , Tartarugas/genética
7.
Sci Rep ; 11(1): 17181, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433851

RESUMO

This study sought to estimate the effect of an anthropogenic and climate-driven change in prey availability on the degree of individual and population specialization of a large marine predator, the fin whale (Balaenoptera physalus). We examined skin biopsies from 99 fin whales sampled in the St. Lawrence Estuary (Canada) over a nine year period (1998-2006) during which environmental change was documented. We analyzed stable isotope ratios in skin and fatty acid signatures in blubber samples of whales, as well as in seven potential prey species, and diet was quantitatively assessed using Bayesian isotopic models. An abrupt change in fin whale dietary niche coincided with a decrease in biomass of their predominant prey, Arctic krill (Thysanoessa spp.). This dietary niche widening toward generalist diets occurred in nearly 60% of sampled individuals. The fin whale population, typically composed of specialists of either krill or lipid-rich pelagic fishes, shifted toward one composed either of krill specialists or true generalists feeding on various zooplankton and fish prey. This change likely reduced intraspecific competition. In the context of the current "Atlantification" of northern water masses, our findings emphasize the importance of considering individual-specific foraging tactics and not only population or group average responses when assessing population resilience or when implementing conservation measures.


Assuntos
Biomassa , Dieta , Baleia Comum/fisiologia , Cadeia Alimentar , Animais , Espécies em Perigo de Extinção , Euphausiacea/fisiologia , Comportamento Alimentar
8.
Glob Chang Biol ; 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33319502

RESUMO

Rapid anthropogenic environmental change is expected to impact a host of ecological parameters in Southern Ocean ecosystems. Of critical concern are the consequences of these changes on the range of species that show fidelity to migratory destinations, as philopatry is hypothesized to help or hinder adaptation to climate change depending on the circumstances. Many baleen whales show philopatry to feeding grounds and are also capital breeders that meet migratory and reproductive costs through seasonal energy intake. Southern right whales (Eubalaena australis, SRWs) are capital breeders that have a strong relationship between reproductive output and foraging success. The population dynamics of South Africa's population of SRWs are characterized by two distinct periods: the 1990s, a period of high calving rates; and the late 2010s, a period associated with lowered calving rates. Here we use analyses of stable carbon (δ13 C) and nitrogen (δ15 N) isotope values from SRW biopsy samples (n = 122) collected during these two distinct periods to investigate foraging ecology of the South African population of SRWs over a time period coincident with the demographic shift. We show that South African SRWs underwent a dramatic northward shift, and diversification, in foraging strategy from 1990s to 2010s. Bayesian mixing model results suggest that during the 1990s, South African SRWs foraged on prey isotopically similar to South Georgia/Islas Georgias del Sur krill. In contrast, in the 2010s, South African SRWs foraged on prey isotopically consistent with the waters of the Subtropical Convergence, Polar Front and Marion Island. We hypothesize that this shift represents a response to changes in preferred habitat or prey, for example, the decrease in abundance and southward range contraction of Antarctic krill. By linking reproductive decline to changing foraging strategies for the first time in SRWs, we show that altering foraging strategies may not be sufficient to adapt to a changing ocean.

9.
R Soc Open Sci ; 6(8): 181800, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31598219

RESUMO

Knowing the migratory movements and behaviour of baleen whales is fundamental to understanding their ecology. We compared δ15N and δ13C values in the skin of blue (Balaenoptera musculus), fin (Balaenoptera physalus) and sei (Balaenoptera borealis) whales sighted in the Azores in spring with the values of potential prey from different regions within the North Atlantic using Bayesian mixing models to investigate their trophic ecology and migration patterns. Fin whale δ15N values were higher than those recorded in blue and sei whales, reflecting feeding at higher trophic levels. Whales' skin δ15N and δ13C values did not reflect prey from high-latitude summer foraging grounds; instead mixing models identified tropical or subtropical regions as the most likely feeding areas for all species during winter and spring. Yet, differences in δ13C values among whale species suggest use of different regions within this range. Blue and sei whales primarily used resources from the Northwest African upwelling and pelagic tropical/subtropical regions, while fin whales fed off Iberia. However, determining feeding habitats from stable isotope values remains difficult. In conclusion, winter feeding appears common among North Atlantic blue, fin and sei whales, and may play a crucial role in determining their winter distribution. A better understanding of winter feeding behaviour is therefore fundamental for the effective conservation of these species.

10.
Sci Rep ; 9(1): 14392, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591419

RESUMO

Understanding the population composition and dynamics of migratory megafauna at key developmental habitats is critical for conservation and management. The present study investigated whether differential recovery of Caribbean green turtle (Chelonia mydas) rookeries influenced population composition at a major juvenile feeding ground in the southern Caribbean (Lac Bay, Bonaire, Caribbean Netherlands) using genetic and demographic analyses. Genetic divergence indicated a strong temporal shift in population composition between 2006-2007 and 2015-2016 (ϕST = 0.101, P < 0.001). Juvenile recruitment (<75.0 cm straight carapace length; SCL) from the north-western Caribbean increased from 12% to 38% while recruitment from the eastern Caribbean region decreased from 46% to 20% between 2006-2007 and 2015-2016. Furthermore, the product of the population growth rate and adult female abundance was a significant predictor for population composition in 2015-2016. Our results may reflect early warning signals of declining reproductive output at eastern Caribbean rookeries, potential displacement effects of smaller rookeries by larger rookeries, and advocate for genetic monitoring as a useful method for monitoring trends in juvenile megafauna. Furthermore, these findings underline the need for adequate conservation of juvenile developmental habitats and a deeper understanding of the interactions between megafaunal population dynamics in different habitats.


Assuntos
Ecossistema , Tartarugas/crescimento & desenvolvimento , Animais , Conservação dos Recursos Naturais , Variação Genética , Dinâmica Populacional , Tartarugas/genética
11.
Sci Rep ; 9(1): 12391, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455830

RESUMO

The Gulf of California, Mexico is home to many cetacean species, including a presumed resident population of fin whales, Balaenoptera physalus. Past studies reported very low levels of genetic diversity among Gulf of California fin whales and a significant level of genetic differentiation from con-specifics in the eastern North Pacific. The aim of the present study was to assess the degree and timing of the isolation of Gulf of California fin whales in a population genetic analysis of 18 nuclear microsatellite genotypes from 402 samples and 565 mitochondrial control region DNA sequences (including mitochondrial sequences retrieved from NCBI). The analyses revealed that the Gulf of California fin whale population was founded ~2.3 thousand years ago and has since remained at a low effective population size (~360) and isolated from the eastern North Pacific (Nem between 0.89-1.4). The low effective population size and high degree of isolation implied that Gulf of California fin whales are vulnerable to the negative effects of genetic drift, human-caused mortality and habitat change.


Assuntos
Baleia Comum/genética , Variação Genética , Densidade Demográfica , Alelos , Animais , DNA Mitocondrial/química , DNA Mitocondrial/genética , Frequência do Gene , Genética Populacional , Genótipo , Haplótipos , Desequilíbrio de Ligação , Masculino , Repetições de Microssatélites/genética , Razão de Masculinidade
12.
Mol Biol Evol ; 36(8): 1746-1763, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31070747

RESUMO

Cetaceans are a clade of highly specialized aquatic mammals that include the largest animals that have ever lived. The largest whales can have ∼1,000× more cells than a human, with long lifespans, leaving them theoretically susceptible to cancer. However, large-bodied and long-lived animals do not suffer higher risks of cancer mortality than humans-an observation known as Peto's Paradox. To investigate the genomic bases of gigantism and other cetacean adaptations, we generated a de novo genome assembly for the humpback whale (Megaptera novaeangliae) and incorporated the genomes of ten cetacean species in a comparative analysis. We found further evidence that rorquals (family Balaenopteridae) radiated during the Miocene or earlier, and inferred that perturbations in abundance and/or the interocean connectivity of North Atlantic humpback whale populations likely occurred throughout the Pleistocene. Our comparative genomic results suggest that the evolution of cetacean gigantism was accompanied by strong selection on pathways that are directly linked to cancer. Large segmental duplications in whale genomes contained genes controlling the apoptotic pathway, and genes inferred to be under accelerated evolution and positive selection in cetaceans were enriched for biological processes such as cell cycle checkpoint, cell signaling, and proliferation. We also inferred positive selection on genes controlling the mammalian appendicular and cranial skeletal elements in the cetacean lineage, which are relevant to extensive anatomical changes during cetacean evolution. Genomic analyses shed light on the molecular mechanisms underlying cetacean traits, including gigantism, and will contribute to the development of future targets for human cancer therapies.


Assuntos
Evolução Molecular , Genoma , Jubarte/genética , Neoplasias/genética , Seleção Genética , Adaptação Biológica , Animais , Apoptose/genética , Demografia , Genes Supressores de Tumor , Filogenia
13.
Gen Comp Endocrinol ; 280: 24-34, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30951726

RESUMO

Fecal hormone analysis shows high potential for noninvasive assessment of population-level patterns in stress and reproduction of marine mammals. However, the marine environment presents unique challenges for fecal sample collection. Data are still lacking on collection methodology and assay validations for most species, particularly for those mysticete whales that have variable diets. In this study we tested collection techniques for fecal samples of free-swimming humpback whales (Megaptera novaeangliae), and validated immunoassays for five steroid and thyroid hormones. Resulting data were used for preliminary physiological validations, i.e., comparisons to independently confirmed sex and reproductive state. Pregnant females had significantly higher fecal progestins and glucocorticoids than did other demographic categories of whales. Two possible cases of previously undetected pregnancies were noted. Males had significantly higher fecal testosterone metabolites than nonpregnant females. Fecal glucocorticoids were significantly elevated in pregnant females and mature males compared to nonpregnant females. Calf fecal samples had elevated concentrations of all fecal hormones. Fecal thyroid hormones showed a significant seasonal decline from spring to summer. Though sample sizes were small, and sampling was necessarily opportunistic, these patterns indicate that noninvasive fecal hormone analysis may facilitate studies of reproduction, stress and potentially energetics in humpback whales.


Assuntos
Fezes/química , Hormônios/metabolismo , Jubarte/fisiologia , Estresse Fisiológico , Animais , Feminino , Glucocorticoides/metabolismo , Masculino , Metaboloma , Gravidez , Progestinas/metabolismo , Reprodutibilidade dos Testes , Reprodução/fisiologia , Natação/fisiologia , Testosterona/metabolismo , Hormônios Tireóideos/metabolismo
14.
Ecol Evol ; 9(7): 4231-4244, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31016001

RESUMO

Estimates of abundance and survivorship provide quantifiable measures to monitor populations and to define and understand their conservation status. This study investigated changes in abundance and survival rates of fin whales (Balaenoptera physalus) in the northern Gulf of St. Lawrence in the context of anthropogenic pressures and changing environmental conditions. A long-term data set, consisting of 35 years of photo-identification surveys and comprising more than 5,000 identifications of 507 individuals, formed the basis of this mark-recapture study. Based on model selection using corrected Akaike Information Criterion, the most parsimonious Cormack-Jolly-Seber model included a linear temporal trend in noncalf apparent survival rates with a sharp decline in the last 5 years of the study and a median survival rate of 0.946 (95% confidence interval (CI) 0.910-0.967). To account for capture heterogeneity due to divergent patterns of site fidelity, agglomerative hierarchical cluster analysis was employed to categorize individuals based on their annual and survey site fidelity indices. However, the negative trend in survivorship remained and was corroborated by a significant decline in the estimated super-population size from 335 (95% CI 321-348) individuals in 2004-2010 to 291 (95% CI 270-312) individuals in 2010-2016. Concurrently, a negative trend was estimated in recruitment to the population, supported by a sharp decrease in the number of observed calves. Ship strikes and changes in prey availability are potential drivers of the observed decline in fin whale abundance. The combination of clustering methods with mark-recapture represents a flexible way to investigate the effects of site fidelity on demographic variables and is broadly applicable to other individual-based studies.

15.
Mol Phylogenet Evol ; 135: 86-97, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30771513

RESUMO

The advent of massive parallel sequencing technologies has resulted in an increase of studies based upon complete mitochondrial genome DNA sequences that revisit the taxonomic status within and among species. Spatially distinct monophyly in such mitogenomic genealogies, i.e., the sharing of a recent common ancestor among con-specific samples collected in the same region has been viewed as evidence for subspecies. Several recent studies in cetaceans have employed this criterion to suggest subsequent intraspecific taxonomic revisions. We reason that employing intra-specific, spatially distinct monophyly at non-recombining, clonally inherited genomes is an unsatisfactory criterion for defining subspecies based upon theoretical (genetic drift) and practical (sampling effort) arguments. This point was illustrated by a re-analysis of a global mitogenomic assessment of fin whales, Balaenoptera physalus spp., published by Archer et al. (2013), which proposed to further subdivide the Northern Hemisphere fin whale subspecies, B. p. physalus. The proposed revision was based upon the detection of spatially distinct monophyly among North Atlantic and North Pacific fin whales in a genealogy based upon complete mitochondrial genome DNA sequences. The extended analysis conducted in this study (1676 mitochondrial control region, 162 complete mitochondrial genome DNA sequences and 20 microsatellite loci genotyped in 380 samples) revealed that the apparent monophyly among North Atlantic fin whales reported by Archer et al. (2013) to be due to low sample sizes. In conclusion, defining sub-species from monophyly (i.e., the absence of para- or polyphyly) can lead to erroneous conclusions due to relatively "trivial" aspects, such as sampling. Basic population genetic processes (i.e., genetic drift and migration) also affect the time to the most recent common ancestor and hence the probability that individuals in a sample are monophyletic.


Assuntos
Baleia Comum/classificação , Baleia Comum/genética , Genoma Mitocondrial , Filogenia , Animais , Sequência de Bases , Teorema de Bayes , DNA Mitocondrial/genética , Variação Genética , Genótipo , Geografia , Repetições de Microssatélites/genética
16.
Conserv Physiol ; 6(1): coy031, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29942518

RESUMO

Baleen whales have few identifiable external indicators of pregnancy state, making it challenging to study essential aspects of their biology and population dynamics. Pregnancy status in other marine mammals has been determined by measuring progesterone concentrations from a variety of sample matrices, but logistical constraints have limited such studies in free-swimming baleen whales. We use an extensive blubber sample archive and associated calving history data to retrospectively identify samples that correspond to pregnant females and develop a progesterone-based pregnancy test for humpback whales. The lowest pregnant blubber progesterone concentration was 54.97 ng g-1, and the mean for the known-pregnant group was 198.74 ± 180.65 ng g-1. Conversely, females known to be below the minimum age of sexual maturity (juvenile females) had an overall low mean progesterone concentration (0.59 ± 0.25 ng g-1), well below the known-pregnant range. Of the mature females that did not return with a calf (n = 11), three fell within the known-pregnant range (320.79 ± 209.34 ng g-1), while the levels for the remaining eight were two orders of magnitude below the lowest known-pregnant level (1.63 ± 1.15 ng g-1). The proportion of females that did not return with a calf but had values similar to known-pregnant females are consistent with rates of calf mortality, but other potential explanations were considered. Our findings support a validated blubber endocrine assignment of pregnancy corroborated with field life history information, a first for any baleen whale species. The progesterone values we measured were similar to those found in different pregnancy states of other cetaceans and support using blubber biopsy samples for assigning pregnancy in humpback whales. This method can be applied to existing archives or new samples to better study life history and population demography broadly across species and populations.

17.
Environ Pollut ; 209: 68-78, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26637933

RESUMO

The impact that microplastics have on baleen whales is a question that remains largely unexplored. This study examined the interaction between free-ranging fin whales (Balaenoptera physalus) and microplastics by comparing populations living in two semi-enclosed basins, the Mediterranean Sea and the Sea of Cortez (Gulf of California, Mexico). The results indicate that a considerable abundance of microplastics and plastic additives exists in the neustonic samples from Pelagos Sanctuary of the Mediterranean Sea, and that pelagic areas containing high densities of microplastics overlap with whale feeding grounds, suggesting that whales are exposed to microplastics during foraging; this was confirmed by the observation of a temporal increase in toxicological stress in whales. Given the abundance of microplastics in the Mediterranean environment, along with the high concentrations of Persistent Bioaccumulative and Toxic (PBT) chemicals, plastic additives and biomarker responses detected in the biopsies of Mediterranean whales as compared to those in whales inhabiting the Sea of Cortez, we believe that exposure to microplastics because of direct ingestion and consumption of contaminated prey poses a major threat to the health of fin whales in the Mediterranean Sea.


Assuntos
Baleia Comum/metabolismo , Plásticos/toxicidade , Poluentes da Água/toxicidade , Animais , California , Ecossistema , Exposição Ambiental , Baleia Comum/crescimento & desenvolvimento , Mar Mediterrâneo , México , Plásticos/metabolismo , Água do Mar/análise , Poluentes da Água/metabolismo
18.
Ecol Evol ; 4(10): 1787-803, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24963377

RESUMO

The appeal of genetic inference methods to assess population genetic structure and guide management efforts is grounded in the correlation between the genetic similarity and gene flow among populations. Effects of such gene flow are typically genomewide; however, some loci may appear as outliers, displaying above or below average genetic divergence relative to the genomewide level. Above average population, genetic divergence may be due to divergent selection as a result of local adaptation. Consequently, substantial efforts have been directed toward such outlying loci in order to identify traits subject to local adaptation. Here, we report the results of an investigation into the molecular basis of the substantial degree of genetic divergence previously reported at allozyme loci among North Atlantic fin whale (Balaenoptera physalus) populations. We sequenced the exons encoding for the two most divergent allozyme loci (MDH-1 and MPI) and failed to detect any nonsynonymous substitutions. Following extensive error checking and analysis of additional bioinformatic and morphological data, we hypothesize that the observed allozyme polymorphisms may reflect phenotypic plasticity at the cellular level, perhaps as a response to nutritional stress. While such plasticity is intriguing in itself, and of fundamental evolutionary interest, our key finding is that the observed allozyme variation does not appear to be a result of genetic drift, migration, or selection on the MDH-1 and MPI exons themselves, stressing the importance of interpreting allozyme data with caution. As for North Atlantic fin whale population structure, our findings support the low levels of differentiation found in previous analyses of DNA nucleotide loci.

19.
PLoS One ; 8(5): e63396, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691042

RESUMO

There are three described subspecies of fin whales (Balaenoptera physalus): B. p. physalus Linnaeus, 1758 in the Northern Hemisphere, B. p. quoyi Fischer, 1829 in the Southern Hemisphere, and a recently described pygmy form, B. p. patachonica Burmeister, 1865. The discrete distribution in the North Pacific and North Atlantic raises the question of whether a single Northern Hemisphere subspecies is valid. We assess phylogenetic patterns using ~16 K base pairs of the complete mitogenome for 154 fin whales from the North Pacific, North Atlantic--including the Mediterranean Sea--and Southern Hemisphere. A Bayesian tree of the resulting 136 haplotypes revealed several well-supported clades representing each ocean basin, with no haplotypes shared among ocean basins. The North Atlantic haplotypes (n = 12) form a sister clade to those from the Southern Hemisphere (n = 42). The estimated time to most recent common ancestor (TMRCA) for this Atlantic/Southern Hemisphere clade and 81 of the 97 samples from the North Pacific was approximately 2 Ma. 14 of the remaining North Pacific samples formed a well-supported clade within the Southern Hemisphere. The TMRCA for this node suggests that at least one female from the Southern Hemisphere immigrated to the North Pacific approximately 0.37 Ma. These results provide strong evidence that North Pacific and North Atlantic fin whales should not be considered the same subspecies, and suggest the need for revision of the global taxonomy of the species.


Assuntos
Distribuição Animal , Baleia Comum/classificação , Baleia Comum/genética , Genoma Mitocondrial/genética , Filogenia , Animais , Sequência de Bases , Teorema de Bayes , Primers do DNA/genética , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Dados de Sequência Molecular , Oceanos e Mares , Especificidade da Espécie
20.
Mol Ecol ; 22(1): 22-40, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23181682

RESUMO

Recent historic abundance is an elusive parameter of great importance for conserving endangered species and understanding the pre-anthropogenic state of the biosphere. The number of studies that have used population genetic theory to estimate recent historic abundance from contemporary levels of genetic diversity has grown rapidly over the last two decades. Such assessments often yield unexpectedly large estimates of historic abundance. We review the underlying theory and common practices of estimating recent historic abundance from contemporary genetic diversity, and critically evaluate the potential issues at various estimation steps. A general issue of mismatched spatio-temporal scales between the estimation itself and the objective of the estimation emerged from our assessment; genetic diversity-based estimates of recent historic abundance represent long-term averages, whereas the objective typically is an estimate of recent abundance for a specific population. Currently, the most promising approach to estimate the difference between recent historic and contemporary abundance requires that genetic data be collected from samples of similar spatial and temporal duration. Novel genome-enabled inference methods may be able to utilize additional information of dense genome-wide distributions of markers, such as of identity-by-descent tracts, to infer recent historic abundance from contemporary samples only.


Assuntos
Variação Genética , Genética Populacional/métodos , Modelos Genéticos , Animais , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Densidade Demográfica , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...